El Automovil

El motor

El motor de combustión interna de un automóvil, sea de gasolina o de gasóleo (diesel), consume carburante enviado desde el depósito por una bomba. En los motores modernos, la regulación del caudal lo hace el control electrónico, tomando como dato la posición del pedal del acelerador y otros datos de funcionamiento como revoluciones, temperatura del agua, etc.

¡Cuándo, con una marcha engranada no se pisa el pedal del acelerador, y el vehículo circula a una velocidad superior a unos 20 km/h, el consumo de carburante es nulo!

Es importante entender que el caudal de combustible, es decir, el volumen que se introduce en cada instante, depende de cuánta potencia se demande del motor. Con el motor ya caliente, la potencia a su vez depende, en cada momento, de dos cosas: la posición del pedal del acelerador y el régimen de revoluciones del motor. Éstas son las condiciones impuestas por el conductor, que ajusta la posición del pedal del acelerador y selecciona la marcha de la caja de cambios según sus intenciones. De su estilo de utilización del vehículo depende, pues, el “consumo real”, en litros de combustible por cada 100 km.

Así, para entregar una cierta potencia y rodar en una determinada velocidad, existen dos o tres posibles combinaciones de caja de cambios y posición de pedal. Por ejemplo, la selección de una marcha más larga hace que para la misma velocidad, el motor funcione a menos revoluciones y consuma menos, como se ve en la figura siguiente.

A partir de las 1.000 o 1.500 rpm, para una potencia dada, el consumo en litros/100 km aumenta al aumentar las revoluciones.

Pero también es evidente que a menor potencia demandada normalmente menor consumo de carburante en litros/100 km. Se demanda menos potencia del coche cuando se utiliza menos aceleración (menos “reprise”), se está en pendiente descendiente, o en carretera cuando se circula a menor velocidad.

Cuando un motor está en ralentí (vehículo a muy baja velocidad o parado), consume poco carburante, solo el necesario para generar la potencia imprescindible para hacer girar el motor a bajas revoluciones venciendo sus propios rozamientos internos.

Sin embargo, como el coche no se mueve pero sí consume combustible, el consumo medio en litros/100 km aumenta.

Por ello, estos periodos de ralentí con coche parado son una importante causa de que este consumo medio en un uso urbano se eleve tanto respecto a un uso en carretera.

En este caso no puede utilizarse el concepto de litros/100 km pues no se recorre ningún kilómetro. El consumo a ralentí se expresa en litros/hora, con un caudal normal entre 0,4 y 0,7 litros/hora según la cilindrada y el tipo de motor, que se encuentra en un régimen de revoluciones cercano a las 900 rpm.
2.2. El carburante

El carburante se introduce al motor, y en su interior realiza una reacción química de combustión. En los motores modernos, esta combustión es prácticamente completa, y se genera CO2 y vapor de agua que salen por el tubo de escape. Pequeñas cantidades de otros productos forman las emisiones contaminantes. El catalizador del tubo de escape tiene como objeto hacer que esas cantidades sean aún menores antes de llegar los gases a la atmósfera. Sin embargo, son cantidades suficientes para causar importantes problemas de contaminación.

Cada volumen de carburante consumido genera una cierta cantidad de energía en el motor (es el llamado poder calorífico del carburante), pero como se explica a continuación (2.4), las leyes de la física hacen que solo un escaso porcentaje de esta energía llegue en forma de trabajo o potencia al eje de las ruedas para propulsar al vehículo. Es importante mencionar que el gasóleo tiene aproximadamente un 13 % más de poder calorífico que la gasolina, siendo esta una de las causas del menor consumo de los motores diesel (para la misma energía producida necesitan menos carburante).

 

2.3. La transmisión

La transmisión de la energía producida en el motor hasta la rueda, que es la que propulsa el vehículo, se hace a través de la caja de cambios y el diferencial.

La caja de cambios trasmite la potencia del motor hacia el diferencial y de este a la rueda. Estos dos elementos se componen de engranajes bañados en aceite y por tanto consumen por rozamiento una pequeña parte de la energía que transmiten.

El embrague tiene por objeto desconectar el motor de la caja de cambios, y por consiguiente, de la rueda. En la posición de “punto muerto” la caja de cambios no transmite la potencia del motor a la rueda.

La caja de cambios permite al conductor decidir algo muy importante: qué revoluciones tiene el motor para la velocidad que el vehículo lleva en ese instante. La caja de cambios trabaja de forma que transmite la potencia desde el motor hacia el diferencial y las ruedas, pero cambia el número de revoluciones entre la entrada (motor) y la salida (eje de la rueda). Es decir, para que un coche avance a 50 km/h en primera, las revoluciones del motor serán altas, pero para hacerlo en tercera, las revoluciones del motor serán bajas. La caja de cambios, por tanto, permite que un motor pueda transmitir la máxima potencia a las ruedas a diferentes velocidades y con ello obtener fuertes aceleraciones utilizando marchas cortas. Permite también que el vehículo pueda circular a bajas revoluciones de motor, con el consiguiente menor consumo, cuando no se demande alta potencia.

 

2.4. Eficiencia energética en el motor

El carburante (gasolina o gasóleo) libera energía térmica a través de la combustión dentro de los cilindros del motor. Esta energía se transforma en trabajo mecánico proporcionando el movimiento a las ruedas del vehículo. En el mejor de los casos, de la energía que libera el carburante sólo se podría aprovechar el 38%, pero este porcentaje es bastante menor sobre todo cuando se circula por ciudades con frecuentes arranques y paradas. Saber sacar el mejor partido al carburante consumido es uno de los objetivos de la “conducción eficiente”.

La figura siguiente ilustra el camino seguido por la energía a través de un típico automóvil con motor a gasolina que transita en ciudad. De la energía contenida en un litro de gasolina, el 62% se pierde por fricción y calor en el motor.

En conducción urbana se pierde un 17% por marcha en vacío o ralentí a causa del tiempo que se pierde en las paradas. Por tanto, en este ejemplo sólo alrededor de un 21% de la energía en la gasolina llega al embrague. Las pérdidas en la transmisión son de otro 6%, dejando sólo un 15% para mover el vehículo.

 

 

2.5. Las resistencias al avance del automóvil

La potencia suministrada a la rueda del coche es, en cada instante, la necesaria para vencer sus resistencias al avance. La potencia resulta de multiplicar la fuerza total de resistencia por la velocidad del coche.

La fuerza total de resistencia al avance del coche es la suma de cuatro resistencias:

• Resistencia de rodadura

• Resistencia por pendiente

• Resistencia por aceleración

• Resistencia aerodinámica

 Resistencia de rodadura: es debida a la ligera deformación del neumático. Depende del peso del coche, del tipo de neumático, del tipo de pavimento y, sobre todo, de su presión de inflado.

 Resistencia por pendiente: depende del peso del coche y de la pendiente. Es positiva si la pendiente es ascendiente, pero si la pendiente es descendente esta fuerza se hace negativa y es realmente impulsora en lugar de resistente.

 Resistencia por aceleración: según la ley de Newton, es el producto de la masa del coche por la aceleración (incremento de velocidad por unidad de tiempo).

Cuando un coche está decelerando esta fuerza se hace negativa y se convierte en impulsora en lugar de resistente.

 Resistencia aerodinámica: depende de las dimensiones del coche, de su forma (coeficiente Cx de resistencia aerodinámica), de la temperatura y presión del aire y de la velocidad del coche respecto al aire que le rodea, elevada al cuadrado.

Como se puede ver, las tres primeras resistencias dependen del peso del vehículo, mientras que la resistencia aerodinámica depende de la velocidad al cuadrado. Así,

A bajas velocidades, la principal causa de fuerza resistente y en definitiva de consumo es el peso del vehículo.

 A altas velocidades, la fuerza más importante en valor es la resistencia aerodinámica.

www.000webhost.com